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A sequence of elements ([n)7 of a real or complex Banach space X is an
M-basis <of X) if V ~ ~ In = X and there exists a biorthogonal sequence of
elements <fn*)7 of X* satisfying n ~ ~ I ker f: = (0), An M-basis (in)7 is a strong
M-basis if, additionally, x E V Un : f,;(x) * O}, for every element x EX. Let X
be a Banach space having a <Schauder) basis. We show that there exists a strong
M-basis of X which is not finitely series summable. It follows that there is an
atomic Boolean subspace lattice on X, with one-dimensional atoms, that fails to
have the strong rank one density property. We show that there is always an atomic
Boolean subspace lattice on X. with precisely four atoms, that also fails to have
this density property. Also, if X = Co or c, an example is given of a strong M-basis
(in)7 of X such that V ~ ~ tf: = X* but with (i,;)7 failing to be a strong M-basis
of X*. This partially follows from a description that is given of a class of strong
M-bases of co. c.l" (j 5: P < 00), 'i:: 1994 Academic Press. Inc.

1. PRELIMINARIES

In [6] D. R. Larson and W. R. Wogen construct an interesting example
of a reflexive operator T acting on complex separable Hilbert space with
the property that the direct sum T EEl 0 fails to be reflexive. This settles a
long standing problem in operator theory.
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Amongst other things, the present paper elaborates on notions implicit
in the basic construction of [6] in order to produce some counterexamples
in the theory of bases and operator theory. Indeed, one of the counterex
amples given below is outlined in a "Note added in proof' of [6] (see also
[1, Addendum]) added after correspondence with the present authors.
Here we give a slight generalisation of this counterexample, useful for
other work included below. One of the main changes however is on the
perspective and arguments. More precisely, in [6] the language and tech
niques are operator theoretic, using, for example, the identification of the
set of bounded operators acting on a complex separable Hilbert space H
with the dual of the ideal of trace class (nuclear) operators acting on H. In
contrast, the methods used below are direct, use the language of the
theory of bases and are valid for Banach spaces, real or complex, with a
basis. Specifically, we begin by showing (Theorem 2.1) that on any Banach
space with a (Schauder) basis there exists a strong M-basis which is not
finitely series summable. By results of [1] this means that, on any such
Banach space, there exists an atomic Boolean subspace lattice, hereafter
abbreviated ABSL, with one-dimensional atoms which fails to have the
strong rank one density property (this terminology is explained below).
This result is the above-mentioned generalisation to the counterexample
outlined in [6]. We then show (Theorem 3.1), again on any Banach space
with a basis, that there exists an ABSL with four atoms that fails to have
the strong rank one density property. This answers negatively, for ABSLs
with finitely many atoms, a question raised in [1] (see also [8, 9]). Finally,
we give an example (Theorem 4.2) of a strong M-basis (f,,)~ of the
Banach space X = Co or c, whose biorthogonal sequence (f,:)~ satisfies
V~~IJn* = X* (= II) but fails to be a strong M-basis of X*.

For the most part, our notation and terminology will follow [1].
Throughout, the terms "Banach space," "subspace," and "operator" will
mean "real or complex Banach space," "closed linear subspace," and
"bounded linear operator," respectively. The dual of a Banach space X is
denoted by X* and' denotes the canonical mapping of X into X**. The
set of operators acting on X is denoted by .<lj'( X). For any vector J EX,
<t> denotes the linear span of {fl. If {L,,}r is a family of subspaces of X,
V rLy denotes the closed linear span of U rLy. For a family {fy}r of
elements of X, v r<Jy) is denoted more simply as V rJy' For any subset
il' ~ X the annihilator il'1- of il' is given by il'.L = (f* E X* : J*(x) = 0,
for every element x E il'}. For every family {Ly}r of subspaces X we have
(n r L y).L=w*-c.l.s.{U r L¢), where "w*-c.l.s." means "weak*
closed linear span of." If f E X and e* E X* the operator e* ® f acting
on X is defined by e* ® f(x) = e*(x)J (x EX).

A family Y of subspaces of X is a subspace lattice on X if (0), X E.5t'
and both V rLy and n rLy belong to Y for every family {L,,}r of
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elements of x. For any subspace lattice x, Alg x denotes the set of
operators, acting on X, that leave every member of x invariant, that is,

Alg X= (T E9)'(X): T(L) <;;; L, for every LEx}.

An atomic Boolean subspace lattice (on X), abbreviated ABSL, is a
subspace lattice x which is distributive and complemented (as a sublat
tice of the lattice of all subspaces of X) and has the property that every
non-zero element of x contains an atom and is the closed linear span of
the atoms it contains (an atom of x is a non-zero element which strictly
contains no other non-zero element).

A subspace lattice x has the strong rank one density property if the
algebra generated by the operators of Alg x of rank one, that is, the set
of finite sums of the form IR j , where each R j is an operator of rank at
most one belonging to Alg x, is dense in Alg x in the strong operator
topology. Since this algebra is a (two-sided) ideal of Aig x, x has the
strong rank one density property if and only if this algebra contains the
identity operator on X in its strong closure. If Sf is an ABSL on X,
the algebra generated by the rank one operators of Alg x coincides with
the sub-algebra of finite rank operators of Aig 2' [3, 7].

A sequence (fn)~ of elements of X is complete if V~~ Ifn = X, and a
sequence (fn*)~ of elements of X* is total if n ~ ~ 1ker fn* = (0). A
complete sequence (fn)~ for which there exists a total (necessarily unique)
biorthogonal sequence (fn*)~ is called an M-basis of X. An M-basis (fn)~

of X is a strong M-basis of X if, additionally, x E V Un: fn*(x) "* OJ, for
every element x E X.

Below, several references are made to [1, Theorem 5.1]. The latter
asserts the equivalence of several statements. We repeat here, for the
reader's convenience, those statements that are of particular relevance
here.

THEOREM [1, Theorem 5.1]. Let (fn)~ be an M-basis of a Banach space
X with biorthogonal sequence (fn* )~. The following are equivalent.

(1) (fn)~ is a strong M-basis of X,

(2) {< fn >}7 is the set of atoms of an ABSL on X,

(3) n / ker fn* = v Un: n E I +\ n, for every subset I <;;; I +,

(4) For every E > 0 and every element x E X there exists a finite sum of
the form

N

F = E AnUn* ® fn)
n~l

(An scalars) such that IIFx -xii < E.
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In the above theorem, the equivalence of (3) and (4) was first proved in
[10]. In the latter, sequences satisfying condition (4) are called I-series
summable and, more generally, an M-basis (/,')~ of X is called k-series
summable (where k E Z+) if, for every k-element set x" x 2 , ••• , x k of
elements of X and every E > 0 there exists a finite sum F of the form as
above such that IIFx; - xiii < E, for i = 1,2, ... , k. Also in [10], an M
basis (f,,)~ is called finitely series summable if it is k-series summable, for
every k E Z+. Let {f"J7 be a strong M-basis of X and let Y' be the ABSL
on X having {( f,')}7 as its set of atoms. Since the operator R E SB( X) is a
rank one operator of Alg .:? if and only if R = A{f"* ® I,,), for some
non-zero scalar A and some n E Z + (see [1, p. 7]), it follows that Y' has
the strong rank one density property precisely when (/,,)~ is finitely series
summable.

The usual (Schauded basis of co' II' 0 :0; P < 00) is the sequence (e,,)~

given bye" = (0",,). The corresponding biorthogonal sequence (e~)7 is
given simply by E~(W) = w,,(w = (w,,». Here e~ corresponds to (om,,)
under the usual linear isometry describing the dual space. The usual basis
(e,X of c, on the other hand, is given bye, = 0,1,1, ... ), e 2 =

0,0,0, ... ), e, = (0, 1,0,0, ... ), . .. . In this case the biorthogonal se
quence (e~)7 is given by ei'(w) = lim" ~x.w", e!(w) = WI - lim" ~oow",

ej(w) = w2 - lim,,~x w", ... (w = (w,,». The usual linear isometry of II
onto c* is given by (a,,)7 ...... 1*, where I*(w) = L~~lakwk-" Wo =
lim"~xw,,, and w = (w,,). Under this isometry ei',e!,ej,e:, ... corre
spond to (1, 0, 0, ... ), ( - 1, 1, 0, 0, ... ), (- 1, 0, 1, 0, 0, ... ), (- 1, 0, 0,
1,0,0, ... ) ... , respectively.

2. FAILURE OF FINITE SERIES SUMMABlLlTY

A brief outline of a proof of a special case of the following result is
given in [6]. Our proof is simpler and more direct; we explicitly produce
the vectors that establish the failure of 2-series summability. By results of
[1, p. 45 and p. 50] it follows that, on any Banach space with a basis there
exists an ABSL with one-dimensional atoms that fails to have the strong
rank one density property.

THEOREM 2.1. On any Banach space with a basis there exists a strong
M-basis which is not finitely series summable (in lact, not even 2-series
summable).

Proof Let X be a Banach space with a basis (e n )7 consisting of unit
vectors. Let (e~J~ be the sequence biorthogonal to (e,,)7. Let (bn )7 be a
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sequence of non-zero scalars, converging to infinity fast enough so that

(For example, we could take bn = r n
, where r > 1.) Define the sequence

(fn)~ of elements of X by

(n ~ 1).

(n ~ 2),

We first show that (fn)7 is a strong M-basis of X.
Since for each n E 1L + the linear spans of {f;: 1 :::; i :::; 2n} and {e i:

1 :::; i :::; 2n} are equal, the sequence (fn)7 is complete. It is readily
checked that the sequence (fn*)~ of elements of X* defined by

(n ~ 1),

(n ~ 1)

is total and biorthogonal to (fn)~' Thus (fn)~ is an M-basis. To show that
(/'1)7 is a strong M-basis, we must show, by [1, Theorem 5.1], that for
every E > 0 and every element Z E X there is a finite linear combination
of the r: ® Ik (k E 1L+) whose value at z approximates z to within E.

Let E > 0 and z E X be arbitrary. Let Zn = e:(z), n ~ 1. Now, either
fin( z) * 0 infinitely often or not. In the former case an easy calculation
shows that

for every n for which fin< z) * O. Since L~ ~ 2'1 + 1Z k ek ~ 0, the left hand
side of the above is strictly less than E for n sufficiently large.

Next, suppose that the latter case holds so that, for some no E 1L +, we
have f2*n(z) = 0, for every n ~ no' For such n (~ no) we have

and iteration shows that, for every j E 1L +, we have

n+j-l Z

" 2k
Z 2'1 - 1 = Z 2'1 + 2j - 1 + f..., b

k ='1 k

Letting j ~ 00 and using the fact that z2'1 + 2j _ I ~ 0 we now see that the
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OC ZZk
ZZn-1 = I: b

k=n k

Hence

Ib"zZ"~11 Ib"llk~n ~kk I

:<;; Ibn IL~n Ib~ I ) ~~~ Iz Zk I

:<;; MsuplzZkI (n ~ no)'
k?:.n

(1)

By choosing n ~ no large enough, we can ensure that MSUPk?:.n1zZkI <
EI2 and at the same time IIL~~z"zkekll < E12. For this n, using (1), we
have

II Ck~ll /;* ® fk ) Z - Z II = II b"zZn-leZn - kEn Zkek II

:<;; MsuplzZkI + II f Zkek II
k?:.n k~2n

< E.

This completes the proof that (fn)7 is a strong M-basis.
Next we show that, by an appropriate choice of (bk )7, it can be arranged

that the strong M-basis (fn)7 fails to be 2-series summable. We explicitly
produce two vectors x, Y for which simultaneous pointwise approximation
fails.

Choose (b k )7 so that (additionally) bk > 0 (k E .z+) and the series
L~=111 -(b; converges. (The choice bk = r k

, with r> 1, mentioned ear
lier, already has this property.) With this choice both of the vectors

make sense (both series are absolutely convergent). We show that there is
no sequence (Fn)7 of finite linear combinations of the fk* ® fk (k E .z +)
such that, simultaneously, Fnx ~ x and F"Y ~ y as n ~ 00. Suppose there
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was such a sequence (Fn)~. Define elements x*, y* E X* by
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(these vectors make sense; (1Ie~ II)~ is uniformly bounded so both series
converge absolutely). Calculations, which we omit here as more general
ones can be found below in the proof of Theorem 3.1, show that

x*(N @fd x ) + y*(ut @fdY) = 0

and so, by linearity,

(k ;:: 1) (2)

x*(Fnx) + y*(F"y) = 0

Taking limits as n ~ 00 we obtain

(n ;:: 1).

x*(x) + y*(y) = O.

But this contradicts the fact that x*(x) + y*(y) = 1 (this is readily
verified; in fact x*(x) = 1 and y*(y) = 0). This contradiction completes
the proof that {fn)7 is not 2-series summable.

Remarks. (1) In the special case of the preceding theorem whose proof
is briefly outlined in [6] (and amplified in [1, Addendum]) (en)~ is taken to
be any orthonormal basis for the complex Hilbert space X and b" = 4"
(n ;:: 1).

(2) In the preceding theorem the condition that

be finite, though sufficient, is not necessary for (fn)~ to be a strong
M-basis of X. For instance, if (bn)~ is uniformly bounded, then from the
equation

(n ;:: 1)

and the fact that the right hand side of it converges to 0 as n ~ 00, it
follows that (fn)7 is a strong M-basis.
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0) It is shown below (Theorem 4.1) that if X is any of co' c, fP
(l ::; p < :xl) and (e n)7 is the usual basis, then (f,')7 as defined in the
preceding theorem is a strong M-basis no matter what bn we choose (the
case where X = 12 is established in [2]). In this case, the last half of the
proof of Theorem 2.1 (beginning "Choose (b k )7 so that (additionally)
bk > a (k E If +) and the series I:~ ~ ,1/ ,;r;; converges ... ") then shows
that (fn)'" fails to be 2-series summable if bk > 0 (k E If +) and
I:7 ~ )1/ jr;; converges. A slightly stronger result is proved in [2] for the
case X = 12

: Given that bk > a (k E If+), (f,')7 fails to be 2-series
summable if and only if I:~ ~)1 /b k converges.

3. FINITE ATOMIC BOOLEAN LATfICES

The strong M-basis constructed in the proof of Theorem 2.1 is used
below to settle in the negative an open question in the theory of non
selfadjoint operator algebras. As pointed out in the preceding section, this
strong M-basis leads to an example of an ABSL with one-dimensional
atoms that fails to have the strong rank one density property. The atoms in
that case are simply the linear spans of the individual In (n ~ 0. At the
other extreme are ABSLs with finitely many (infinite-dimensional) atoms.
It is shown in [I, Theorem 3.1] that every ABSL with two atoms has the
strong rank one density property. In [4], a wide class of ABSLs with finitely
many atoms also having this density property is exhibited. Nevertheless,
the question: Must every ABSL with finitely many atoms have the strong
rank one density property? remained open. Our next result answers this
question in the negative.

THEOREM 3.1. On every Banach space with a basis there exists an ABSL
with four atoms that fails to have the strong rank one density property.

Proof Let X be a Banach space with basis (e n )7 consisting of unit
vectors and let (e~)7,(fn)7,(fn*)7 be as defined in the proof of Theorem
2.1 with (bn )7 a sequence of positive scalars satisfying

and

As proved in the preceding theorem, (In)7 is a strong M-basis of X, so by
[1, Theorem 5.1] the family of subspaces {<!n)}nEz+ is the set of atoms of
an ABSL on X. It follows (see [1, Example 2.7(iD]) that the subspaces L;
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(i = 1,2,3,4) defined by
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L, = V f411+'
11~()

(i = 1,2,3,4)

are the atoms of an ABSL 2' on X. In this ABSL the (Boolean)
complement L'i of each L i is the closed linear span of the other three
atoms. Thus, for example,

[;1 = L 2 V L 3 V L 4 = v{fm: mE 1'+ not of the form 4n + 1}.

Hence, using [1, Theorem 5.1],

([;1).1 = Lr50 ker f4*11 + 1).1 = w* - C.l.S·{f4*11 + 1: n EN}

(where we have used the fact that (ker fn*).1 = (fn*), (n 2: 1)). Similarly,

(i = 1,2,3,4).

We shall show that, for an appropriate choice of (bll)~'

x* « e* ® f) x) + y* « e* ® f) y) = 0 (1)

for every rank one operator e* ® f of Alg 2', where the vectors
x, y, x*, y* are defined as in the proof of Theorem 2.1. In the same way as
in the latter proof, the fact that x*(x) + y*(y) = 1 shows that the identity
operator does not belong to the strong operator closure of the algebra of
finite rank operators of Alg 2'.

To establish (1) we first show that, for every i = 1,2,3,4

(m,n EN)

(taking bo = 1)

that is,

x*(f4n+;)f4*m+i(X) + y*(f411+i)nm+i(Y) = 0 (m, n EN). (2)

This is more general than Eq. (2) in the proof of Theorem 2.1 where we
had m = n. The proof for this special case was omitted there because it is
included in what we are now about to prove. For every m, n E N we have,
as can easily be verified

X*(f411+1)f4*m+I(X) = ..jb 211 /b 2m

X* (f411 + 2 ) f4*". + 2 ( x) = 0,

X*(f411+3)f4*m+3(x) = - ..jb211+2/b2m+2'
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y*(f4n+dftm+'(Y) = -Vb~n+,/b2m+"

y*(f4n+2)gm+2(Y) = 0,

Y*(f4n+3)f4~n+3(Y) = ,jb2n +,/b2m +"

y*(f4n+4)f4~n+4(Y) = 0.

Hence the [eft hand side of Eq. (2) takes the values

0, b 2n +2 Vb 2n +1--+ --
b2m +2 b 2m +I ' °

for i = 1, 2, 3, 4 respectively. Obviously these values are all zero in the case
m = n needed in the proof of Theorem 2.1. But they are also all zero if
bn = r n with r > 1 and we will require the bn (n E Z +) to be of this form
in the remainder of this proof. By linearity, Eq. (1) holds for every element
e* E I.s. {f4*n +i: n E N} and every element f E I.s. {f4n +,: n EN}, for
every i = 1,2,3,4 (where "I.s." means "[inear span of'). A simple argu
ment now shows that Eq. (0 holds for every element e* E w* 
C.I.S.{f4*n+i: n EN) = ([;)1- and every element fE V~~of4n+' = L i , for
every i = 1,2,3,4. But, if the rank one operator e* ® f belongs to Alg X,
then f E L i and e* E (L') 1- for some i (see [1, p. 7]). The proof is
therefore complete.

Remarks. (1) The proof of the preceding theorem shows that the
ABSL !i" even fails to have the following "2-density" property: For every
elements x, Y E X and every E > °there exists a finite rank operator
FE Alg !i" such that IIFx - xII < E and IIFy - yll < E. Using this coun
terexample we can make the observation, similar to that made in [2] in an
analogous situation, that, for an ABSL with finitely many atoms, the
algebra generated by the identity operator and the finite rank operators in
its Alg need not be "2-dense" in its Alg, in the obvious sense (so need not
be strongly dense). One simply has to consider, on X ill X, the ABSL ..sf(2)

with atoms L i ill L[ (i = 1,2,3,4), where ..sf is any ABSL on X, with
atoms L, (i = 1,2,3,4), that fails to have the "2-density" property de
scribed above. Let x, y E X be vectors that show the failure of "2-density"

for x and let T E .~(X ill X) be the operator given by T = (~ ::). We

claim that the following is false: For every E > °there exists a scalar A and
a finite rank operator F E A[g 2(2) such that IK AI + F X x ill x) - T( x ill
x)11 < E and IKAI + FXy illy) - T(y illy)11 < E. For, othelWise, there ex
ists sequences (F't l )7 (j = 1,2,3,4) of finite rank operators of Alg 2' and
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a sequence (An)7 of scalars such that, as n ~ cc

H~ 0) (F'"' :;:: )](;) ~ (~ ~ )(; JI + F~n)

and

H~ 0) (F'"' F)"') ](y ) (I 0)(' )
I + F~n) Ft) Y ~ 0 0 Y'

But this gives

A x + (F(n) + F(n»)x ~ x
n ] 2 '

A x + (F(n) + F(n»)x ~ 0n 3 4

and

AnY + (Fin) + Fin»)y ~ y,

AnY + (Fjn) + Ft))y ~ o.

253

Subtracting the first two and the second two and setting Gn = F}n) + Fin)
- Fjn) - Ft) we obtain Gnx ~ x and G"y ~ y, contradicting the fact
that x and y show the failure of "2-density" for Y. Since T E Alg y(2)

this establishes our observation.

(2) As mentioned earlier, every ABSL with two atoms has the strong
rank one density property and the preceding theorem shows that this is
false for ABSLs with four atoms. N. Spanoudakis and the first author in [5]
give a construction of an ABSL with three atoms also failing the strong
rank one density property. The case of finitely many atoms is, therefore,
settled.

4. DUAL BASES

If X is a reflexive Banach space and ([n)7 is an M-basis of X, it is easily
show that the sequence (/n*)7, of functionals biorthogonal to ([,,)7, is an
M-basis of X* with biorthogonal sequence (fn)7, where' denotes the
canonical mapping of X into X**. It is known [1, Corollary 5.3J that
"M-basis" can be replaced by "strong M-basis" in the preceding state
ment. Concerning the preservation of such properties, note that, whether
X is reflexive or not "coming down" from X* to X causes no problems by
virtue of [1, Corollary 5.4]: If (/,,)7 is a sequence of vectors of X and there
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is a strong M-basis of X* which is biorthogonal to it, then <tn)~ is a
strong M-basis of X. It is easily shown that "strong M-basis" can be
replaced by "M-basis" in the latter statement.

Of course, on a non-reflexive space, thc sequencc <tn*)~ biorthogonal to
an M-basis (In)~ may fail to be an M-basis of the dual space for trivial
reasons. (For instance, for no M-basis <t,.)~ of X = II can <tn*)~ be an
M-basis of X* = r sincc the lattcr is not separable.) The correct question
to ask under these circumstances is: Must (f,~)~ bc an M-basis of V ~ ~ 1 fn*?
It is easy to show that the answer is affirmative. On the other hand, we
give an example below of a strong M-basis (f,)~ of X = Co or c such that
(f,n~ fails to be a strong M-basis of V ~ ~ I f,~, even though V ~~ dn* = X*
(= II). This example follows from more general theorems that we present.

First we show that if X is any of Co' c, IP (I :s; p < (0) and (e,.)~ is the
usual basis, thcn the fn (n E Z +) dcfined in the proof of Theorem 2.1 are
always a strong M-basis, no matter what bn (n E Z +) we choose (some
even zcro). We note that the case p = 2 of the following theorem is
proved in [2].

THEOREM 4.1. Let X be anyone of the Banach spaces co' c, IP (I :s; p <
00). Let (e,)~ be the usual basis of X with biorthogonal sequence denoted by
(e~ )~. Let (b,.)~ be any sequence of scalars and let the sequences (f,)7, (fn*)7
be defined by

(n ~ 2),

and

(n ~ I)

fin-I = ein-I (n ~ I), f2~' = -bnein-I + ein + bnein+1 (n ~ 1).

Then <t,)~ is a strong M-basis of X with biorthogonal sequence (fn*)~'

Proof The biorthogonality condition f,~<tn) = Dm " and the facts that
V~~Jn=X, n~~lkerfn*=(O) are easily verified. Thus (fn)~ is an
M-basis. To complete the proof we must show (by definition) that x E

V (fm: fn; (x) * A}, for every element x E X. Let x be given in terms of
the basis by x = L~~lxnen' Put J = {j E Z+: N(x) = a}. At least one of
the following three conditions must hold.

(a) J contains an infinite number of odd integers. Let (nk)~ be an
increasing sequence of positive integers with {2n k - 1: k E Z+} <;;; 1. Then
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r:fl\f~(X)fm -Xii =llbnkX2nk-le2nk - m~nkXmemll

=11 t Xmemll-+ 0, as k -+ ce.
m- 2n k

255

But, in the sum on the left hand side, we obtain a zero contribution from
those terms for which m E J. So in fact we can write

2nk -1

L. f~( x)fm -+ x,
m~1

m~J

as k -+ ce,

showing that x E V Um: m $. J}, as required.

(b) 1L+\J contains an infinite number of even integers. Let (nk)~ be
an increasing sequence of positive integers such that {2n k : k E 1L+} <:;;;

1L+\J. Then f2*nk(x) * 0, for every k ~ 1, and as

rlllf~(X)fm + (X 2nk - bnkx2nk-l)f2nk - xii

= II i: xmem11-+ 0, as k -+ 00,
m~2nk+\

arguing as in case (a) we have x E V Um: m $. J).

(c) For some k o E 1L+ we have 2k E J and 2k - 1 E 1L+\J, for
every k ~ k o. Suppose first that J = {2k: k ~ k o}. We shall show that, for
every non-zero element y* E X* satisfying y*(fm) = 0, for every m $. J,
we have y*(x) = 0. It then follows by the Hahn Banach theorem that
x E vUm: m $. J}, as required. Define the sequence (Yn)7 by Yn = y*(en)
(n ~ 1). Then y* (f2n-l) = 0, for every n ~ 1, so

(n ~ 1), (1)

taking bo = Yo = 0. Adding the first N such equations yields

N

bN Y2N = - L Y2k-\
k=1

(N~I). (2)

As y*(f2n) = 0, for 1 :-0; n :-0; k o - 1, Y2n = 0, for 1 :-0; n :-0; k o - 1. From
(1) this yields Y2n-l = 0, for 1 :-0; n :-0; k o - 1, so Yn = 0, for 1 :-0; n :-0;
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2k o - 2. Now, as fin(x) = 0, for every n z k o, we have

X 2n = bn ( x 2n _ I - X 2n + I )

For every N z k o we have, using (2),

2N

LXiYi =
i~ 1

2N

L XiY,
i~2kll-1

(since Yn = 0, for 1 ::-s; n ::-s; 2k°- 2)

N

L X 2i - 1Y2i-1 +
i=k o

N

L X 2i Y2i
i=k ll

N

L. X 2i - 1YZi-I 

i=k"

N N

L X 2i - 1Y2i-1 - L (X 2i - I
i=k" i=k"

Hence

N N

L X 2i - 1Y2i-1 + L bi (X 2i - I -X 2i + I )Y2i

i=k" i=k"

- X 2i + I )( t Y2k-I)
k~l

N (i)L (x 2i - I - X 2i + I ) L. Y2k - I

,=k" k=k"

= X 2N + I ( .~ Y2i - 1) •
I-k"

2N ( N ).L XiYi = X 2N + I .1: Y2i-1
I~ I ,~k"

(3)

If X = Co or c, then X 2N + I ~ °and, using the facts that C6 = c* = 11,
O:;:k"Y2i-l) is convergent so bounded. Then L;~lXiYi ~ 0, so y*(x) =

limN~,X;~IxiYi = 0. If X = [P (l < p < 00), there is a subsequence of
(L;~IXi y) converging to zero. For, suppose not. Then there exists an
integer k I Z k o and aD> °such that

1 .~XiYil z 0
1=1

Then, using (3) and Holder's Inequality,

o::-s; IX 2N + 111.t Y2i-ll::-s; IX 2N+IIN
11p

IIY*1I
I~k"
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8"
IX 2N + I I" ~ Nlly*111'

But, since 2:% = 11/N diverges, this contradicts the fact that L~' ~ I Ix 2,v + I I"
converges. Thus some subsequence of (2:7~IXiY) converges to zero and it
follows that y*(x) = 0. That y*(x) = ° in the case where X = I' is
proved similarly.

This completes the proof of the subcase of (c) where J = {2k : k ~ ku}.
More generally, suppose that J = !ff U {2k : k ~ ko} where !ff is a non
empty subset of {l, 2, ... , 2k o - 2}. By what has just been proved,

n kerHk = vU,,: n $. {2k: k ~ k o}}·
k~kll

Hence

X E n ker f,~ ~ n ker Hk = V f" + V f,,·
mEl k~kl) nEg' "Ill

Thus, X = Y + z with y E V" Ei'I" and z E V" ~ Jf". So x E

n"Exkerf,,* and, since V "~Jf" ~ nnEi',kerfn*' Z E n"Ei'kerf,,*.
Thus y E (n "E X ker f,,*) n (V "E xl,,) = (0), so y = ° and x = Z E

V "~Jf,,, as required. This completes the proof of the theorem.

To give an example of a strong M-basis (f,,)~ whose biorthogonal
sequence ([,,*)7 fails to be a strong M-basis of its closed linear span, we
shall use the cases where X = Co or c in the preceding theorem. With
notation as in the statement of that theorem, in the case X = cu' (e~)~ is
the usual basis of II (identifying cti and II in the usual way). In the case
X = c (again identifying c* and I' in the usual way) (e~)7 is the basis of II
given by ei = 0,0,0, ... ), e! = (-1,1,0,0, ... ), ej = (-1,0,1,0,0, ... ),
e: = (-1,0,0,1,0,0, " . ),.... In either case it easily follows that
V ~ _d,,* = X*, whatever the bn (n E Z+). We next show that ([,,*)7 may
or may not be a strong M-basis of X*.

THEOREM 4.2. Let X be either of the Banach spaces co' c and let (en)~'

(e~)7, ([,,)7, and ([,,*)7 be defined as in the statement of Theorem 4.1 with
(b,,)7 any sequence of non-zero scalars. Then (f,,*)7 is a strong M-basis for
V~~,f,,* (=X* = 11) if and only if 2:;~11/lbnl diverges.

Proof Note that, by Theorem 4.1, ([,,)7 is a strong M-basis of X and,
by our earlier remarks, (f,,*)7 is an M-basis of X*, with biorthogonal
sequence (!" )7, whatever the b" (n E Z +).
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Suppose that L:~~,I/Ib/ll diverges. We show that, for every element
x* E X* some subsequence of «L:~J~J Ilk 0 t: )x*) converges to x*. It
then follows, by [1, Theorem 5.1], that (f,n7 is a strong M-basis of X*.
Let x* be given in terms of the basis (e~)7 of X* by x* = L:~_lx/le~.

Calculation shows that, for every N ~ 1,

As L:~~2Nxkek -+ n, it is enough to show that some subsequence of
(b N x 21,,)7 converges to zero. If this were false then, for some {) > 0 and
no E 11+ we have

so IxU'i' I ~ {) / IbN I, for every N ~ no' But this contradicts the fact that
(X/l) E {I (this is obvious in the case X = co; in the case X = c it is slightly
harder to verify). Hence <!,n7 is a strong M-basis of X*.

Conversely, suppose that L:~ ~ 11/ Ib/ll converges. Define the element
y* E X* by y* = ei - L:~ ~ ,e!,,Ibn. Calculation shows that y* E

n~~lker/2/1_I' However, we show that y* $. V~=din' It then follows,
by [1, Theorem 5.1] (since n ~ ~ Iker 12/1-1 "* V ~ ~ di,), that <!n*)7 is not a
strong M-basis of X*.

In either of the cases X = Co or c identify y* and f2*n (n E 11 +) with
their images in {I under the usual linear isometry of X* onto II. In the
case X = Co we have y* = 0, -1/bl,O, -1/b2,O, ... ) and fin =

(O,O, ... ,O,-bn,I,b/l'O,O, ... ), where I occurs as the 2nth term. The
element u** = 0,0,1,0,1,0, ... ) E too = ((I)* satisfies u**(fin) = 0, for
every n E 11+ and u**(y*) = 1. Thus y* $. V~~lf2*n' In the case X = c
we have

(
"'11 I 1 )

y* = 1 + L -, - - ,0, - - ,0, - -b ,0, ...
k=lbk b l b2 3

and fi = (-1 - 2b l , 1, bl' 0, 0, ... ), f2~' = (-1,0,0, ... ,0, -bn,
1, bn , 0, 0, ... ) (n ~ 2), where 1 occurs as the 2nth term. In this case the
element u** = 0, 1,2,1,2,1,2, ... ) E l'" satisfies v**<!in) = 0, for every
n E 11+ and u**(y*) = 1. Hence y* $. V ~~ d2*n once again. This com
pletes the proof.

Observe that, in the one remaining case, X = {Ii (I < p < <Xl), where the
strong M-basis of X defined in the statement of Theorem 4.1 has
biorthogonal sequence <!n*)7 satisfying V ~ ~ I fn* = X*, (fn*)7 is indeed a
strong M-basis of X*. This follows from our earlier remark since X is
reflexive.
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